首页> 外文OA文献 >Phase Transitions in Semidefinite Relaxations
【2h】

Phase Transitions in Semidefinite Relaxations

机译:半定沉积中的相变

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Statistical inference problems arising within signal processing, data mining,and machine learning naturally give rise to hard combinatorial optimizationproblems. These problems become intractable when the dimensionality of the datais large, as is often the case for modern datasets. A popular idea is toconstruct convex relaxations of these combinatorial problems, which can besolved efficiently for large scale datasets. Semidefinite programming (SDP) relaxations are among the most powerfulmethods in this family, and are surprisingly well-suited for a broad range ofproblems where data take the form of matrices or graphs. It has been observedseveral times that, when the `statistical noise' is small enough, SDPrelaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several `detectionthresholds,' as well as for the estimation error above these thresholds. Westudy some classical SDP relaxations for statistical problems motivated bygraph synchronization and community detection in networks. We map theseoptimization problems to statistical mechanics models with vector spins, anduse non-rigorous techniques from statistical mechanics to characterize thecorresponding phase transitions. Our results clarify the effectiveness of SDPrelaxations in solving high-dimensional statistical problems.
机译:信号处理,数据挖掘和机器学习中出现的统计推断问题自然会带来困难的组合优化问题。当数据的维数很大时,这些问题变得很棘手,这对于现代数据集通常是这样。一个流行的想法是构造这些组合问题的凸松弛,对于大型数据集可以有效解决。半定性编程(SDP)松弛是该系列中最强大的方法之一,并且令人惊讶地非常适合于其中数据采用矩阵或图形形式的各种问题。数次观察到,当“统计噪声”足够小时,SDPrelaxations会正确检测基础的组合结构。在本文中,我们为几个“检测阈值”以及这些阈值以上的估计误差开发了渐近预测。对于由图同步和网络中的社区检测引起的统计问题,Westudy进行了一些经典的SDP放宽。我们将这些优化问题映射到具有矢量自旋的统计力学模型,并使用统计力学中的非严格技术来表征相应的相变。我们的结果阐明了SDPrelaxations解决高维统计问题的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号